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Near-infrared diffuse reflectance spectrometry is a rapid analytical

method that typically uses the reflectance of a sample at several

wavelengths to determine the sample's composition1 . The technique is

heuristic in its approach and makes extensive use of computers2 ,3 .

Through a computational modeling process (generally employing multiple

linear regression), near-infrared reflectance analysis is able to correct

automatically for background and sample-matrix interferences, making

ordinarily difficult analyses seem routine. The modeling process employs

a 'training set' of samples to 'teach' the computer algorithm to

recognize relationships between minute spectral features and the sample's

composition4 . Of course, the training set must have been previously

analyzed by some other reliable (reference) chemical procedure. Although

assembling a training set and developing a new calibration can require

considerable time, the subsequent speed of quantitative analysis has

provided plenty of impetus for the growth of near-IR reflectance methods.

Quantitative analysis has been the principal application of near-IR

reflectance analysis to date5 . Recently, however, some attention has

been turned to the use of near-IR reflectance as a qualitative technique

as wellS-i ° . Near-IR reflectance analysis has been shown to be capable

of differentiating among a variety of pure compounds and mixtures of

constant composition. It is this ability that is exploited here to solve

the false-sample detection problem.

A false sample is simply any sample that falls outside of the domain

of the samples used to train the near-IR reflectance analysis algorithm.

For example, a manufacturer may be interested in using near-IR

reflectance analysis to monitor the protein concentration of a liquid
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stream. The normal range of concentrations might be 3 to 6%, and training

samples would be selected to completely cover this range. If a process

change or equipment failure should occur one day and the protein

concentration jump to 10%, a false-sample situation would exist.

Analyzing this false sample requires extrapolating beyond the range of

the training set used to generate the prediction equation. An operator

bhould be signaled either to stop the stream and correct the equipment

failure, or to recalibrate the near-IR reflectance analysis instrument to

accept the new range of concentration values.

This type of false-sample condition is easily detected, however, by a

simple test to determine if the predicted value falls outside of the

range of concentrations used in generating the prediction equation.

Another type of false-sample condition is more insidious and difficult to

detect. A completely new component, a component not present in the

training set and therefore thoroughly unexpected, can appear in the

samples and cause erroneous composition values to be generated. This

component could be a chemical entity, as might be introduced by opening a

valve at the wrong time or by contamination of the raw materials, or from

a noise source, such as instrument drift over time or a change in

particle-sise distribution. In short, the aim of false-sample detection

is to go beyond simple qualitative analysis to answer the question, 'Does

my prediction equation apply to the current sample?'

The process of detecting false samples involves the analysis of

multivariate data distributions, a topic which is currently being

investigated in a number of ways1l. We have selected quantile analysis'2

as a basis for nonparametric tests of distributional assumptions because

it provides easy access to both numerical statistics and readily

-4-
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interpreted graphs. Quantile analysis simply transforms the cumulative

frequency distribution of a data set into a convenient linear form. From

this form the location, scale, and skew of the data can be estimated.

Quantile analysis provides additional advantages13 that are particularly

useful with multivariate data. These advantages include the following:

1. The complexity of the graph is independent of the number of

observations.

2. The quantiles are invariant under monotone transformation (such as a

transformation of a distribution location or scale).

3. Condensation, interpolation, and smoothing of data are easily

accomplished.

4. The grouping difficulties that occur in histograms are not present.

5. Peculiarities, such as overlap of two distributions or multimodality,

are effectively indicated.

Figure 1 shows reflectance data obtained from a number of spectra,

using two wavelengths to describe two hypothetical compounds, A and B.

(Each wavelength in a spectrum can be represented as a spatial dimension,

giving a single point in an n-dimensional space for a spectrum recorded

at n wavelengths. The point is translated from the origin by amounts

that correspond to the magnitude of the reflectance observed at each

wavelength. By representing spectra in this manner, a group of similar

samples with similar spectra appears as a cluster of points at a certain

location in space.) A univariate distribution can be formed from the

points that lie within a specified radius of the line connecting the

centers of clusters A and B.



Quantile plots are often utilized in the analysis of univariate

distributions to compare a theoretical distribution to an empirical one.

A particular quantile (p) selected for plotting represents the value of

the integral of a probability density function (from negative infinity

until the quantile p is reached). Comparing two distributions by their

quantiles requires that both distributions be transformed into cumulative

distributions. Essentially, this is accomplished by integrating the two

probability density functions to form a theoretical cumulative

distribution function (TCDF) and an empirical cumulative distribution

function (ECDF). Typically, the upper limits of integration for p are

what is plotted for the TCDF and the ECDF. Starting with p and solving

for a limit of integration constitutes the inversion of the distribution

function. By convention, quantile plots put the TCDF on the x-axis and

the ECDF on the y-axis. The scales used on each axis are derived from

the values of the corresponding inverse cumulative distribution functions

as p is allowed to vary between zero and one13 .

Figure 2 shows a quantile plot of the points along the center line

(inside the box) from Figure 1. The inset in Figure 2 is a histogram

(empirical distribution function) of the same points. These points, used

to form the ECDF and set along the ordinate, are plotted versus the

quantiles of the normal distribution (the TCDF) on the abscissa. The

slopes and intercepts of the two lines in Figure 2 supply parameters to

equations for the probability density in the direction through the two

cluster centers. In a similar manner, quantiles can be used to set

confidence limits around clusters by determining the probability density

in a specified direction.
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Multivariate data analysis using distribution quantiles provides a

way both qualitatively to identify samples and to determine when a new

near-IR reflectance calibration equation is required. The algorithm is

conceptually uncomplicated and takes a step toward simplifying the

statistics of near-IR reflectance analysis in the manner in which near-IR

reflectance methods themselves have simplified instrumentation. A

description of this algorithm is the subject of the following section.

THEORY

Data Clusters in Near-IR Reflectance Analysis. The sample-

identification problem in near-IR reflectance analysis can be a complex

one indeed, and time can be spent profitably in the examination of a

fairly simple construction of this problem. Figure 3 depicts the spectra

of three hypothetical pure compounds, A, B, and C. These spectra were

recorded at two wavelengths and projected into a two-dimensional space as

described in the previous section. The measurements are assumed to be

free of error from particle-size differences, concentration variations,

drift, etc., and therefore result in three points in space rather than

three clusters. When 1000 sample mixtures are prepared from A, B, and C

by randomly weighting the proportion of each compound in each mixture, a

training set (whose spectra are shown in Figure 4) is formed. (Figure 4

assumes that Beer's Law holds.) This training-set cluster is basically

elliptical; should one desire to determine the distance of a new sample

from this cluster, the Mahalanobis metric14  provides an obvious means.

Figure 5 shows the resulting training set when compounds A and C are

moved approximately three times farther away from B than they were in
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Figure 4. The training set remains elliptical, but its orientation has

been altered (the slope of the line through the major axis of the ellipse

has increased, as shown by the scales on the x and y axes). This

behavior demonstrates that the shape of the training-set cluster is

basically independent of the positions (spectra) of the raw materials (A,

B, and C), at least in the error-free case represented by the pure

components depicted in Figure 3.

Figure 6 corresponds to Figure 3, except that the pure-component

spectra are no longer precisely known. A, B, and C are now 1000-point

clusters, formed by adding bivariate-normal noise to the original three

points. Each of these clusters is also elliptical. The variance of the

major (horisontal) axis is arbitrarily set four times greater than that

of the minor (vertical) axis. When a randomly weighted training set of

1000 hypothetical mixtures is created from the clusters corresponding to

the points used in Figure 5, a revealing pattern (Figure 7) emerges. The

smooth elliptical shape of the cluster has broken down and the

distribution of points about the center of the cluster is no longer

perfectly symmetric. A cross-section of points through the center of the

cluster shows a definite right(or positive)-skew, indicating the presence

of a leverage effect by points with higher values. (A frequency-

distribution polygon of this cross-section appears in Figure 8.) Real

near-IR reflectance data showing this same effect appears in Figure 18

and will be discussed later.

Figure 9 demonstrates the effect of such a skew on the determination

of a confidence limit. Because of the balancing property of the mean

(p), a small number of points located some distance away from the others

exerts a considerable leverage on the value of the mean. When these
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distant points are lower values than the rest as in Figure 9, the v

distribution is said to be left(or negatively)-skewed, and the mean

shifts downward. In Figure 9, these outlying points are real and should

not be discarded (the solid line represents the underlying distribution

of the total population from which the samples were drawn). For this

situation, the usual symmetric statement of confidence limits15, e.g.,

(confidence limits for anything) = A +/- ta,oSanything

does not provide an adequate description. For example, suppose zao = a

(see Figure 9). Clearly, the probability of a point appearing at (#+a)

is different than the probability of a point appearing at (#-a).

Discriminant Analysis in Near-Il Reflectance. Asymmetry of near-IR

spectral clusters about their means has appeared in literature reports9 .

However, the methods that have been applied to discriminant analysis in

near-IR reflectance have not dealt with this phenomenon. In general,

discriminant analysis involves several assumptions18 , including:

I. No discriminating variable is a linear combination of other

discriminating variables.

2. The covariance matrices for all (spectral) groups are approximately

equal (unless special formulas are used).

3. Each group has been drawn from a population that is normally

distributed on the discriminating variables.

The violation of these assumptions reduces the efficiency of discriminant

a atysis, and increases Lhe probability of misclassifying samples.

-.--



The quantile BEAST. Nonparametric methods (distribution-free methods

whose properties hold under very few assumptions about the population

from which the data are obtained) can be profitably applied to this sort

of discriminant analysis. Nonparametric techniques provide a

conceptually simpler statistical alternative to many common procedures,

and for the price of some additional arithmetic, can keep violations of

assumptions from being reflected in faulty inferences. The Quantile

BEAST (Bootstrap Error-Adjusted Single-sample Technique) is such a

distribution-free method of flagging samples outside of the domain of the

training set. It is based on the bootstrap procedure of Efron17 , a

nonparametric method of assigning a standard error to a point estimate.

The Quantile BEAST constructs a multidimensional cluster in space using

the reflectances of each training-set sample at a number of wavelengths.

New samples are then projected into this space and a nonparametric

confidence test is performed to determine whether the new sample is part

of the training-set cluster. In this manner, qualitative identification

of pure samples is made possible and false-sample mixtures can be

detected.

Whenever it is possible that the distribution underlying a set of

samples is skewed, an asymmetric nonparametric method of setting

confidence limits should be employed1 Q. This sort of method does not

assume that the best point estimate of the mean lies at the center of the

interval between the confidence limits. The BEAST acquires this

asymmetric estimation capability from the bootstrap, which can be

summarized as follows. Given an unknown distribution function F, and

some parameter of interest (such as the sample mean or median) that is a

function of a number of independent identically distributed observations
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from F, the object of the bootstrap is to determine the standard error in

the parameter of interest from the observations in a training set (a

representative sampling of the unknown distribution). The real standard

error of the parameter is a function of the unknown distribution, the

size of the sample set, and the form of the parameter. However, knowing

the number of observations and the form of the parameter, the standard

error can be expressed as a function of only the unknown distribution F

(in essence, this is the definition of the bootstrap estimate of the

standard error). In other words, although the actual distribution F is

unknown, we can estimate it using the empirical probability distribution

represented by the training set. There are three steps to this

estimation process:

1. A training set composed of equally weighted observations from the

unknown distribution is created. This empirical probability

distribution (see Figure lOb) must be constructed to adequately

describe the variation in the unknown distribution F (Figure lOa).

The 19 observations that appear in Figure lOb can be thought of as 19

'blocks' removed from an infinitely large pile of similar observation

'blocks' (Figure lOa). These training-set blocks are stacked in

Figure lOb in a manner that describes their original positions in the

infinitely large pile, thus forming a histogram. Once assembled,

this training set remains unchanged for the remainder of the

estimation procedure.

2. Bootstrap observations are blocks that are randomly and independently

drawn from the training set, with replacement from the training set

(so that the training set is never depleted or changed), to form a

bootstrap set with the same total number of blocks as the training

-11-



set (19 blocks for each set in Figures 1la-c). Note that the number

of observations appearing at a given location in a bootstrap set will

vary between bootstrap sets taken from the same training set.

3. The sampling distribution of the parameter of interest (e.g., the

center of a group of spectral points in hyperspace) for the unknown

distribution F is approximated by the distribution of that parameter

calculated using the bootstrap observations (hereafter this

distribution is termed simply the "bootstrap distribution").

The most difficult part of the bootstrap procedure is the actual

calculation of the bootstrap distribution. There are three ways to

arrive at this distribution.

1. Direct theoretical calculation of the distribution can be performed.

This works for a few special examples, but is usually impossible in

experimental situations.

2. Taylor-series expansion methods can be used to find an estimate of

the mean and variance of the bootstrap distribution of the parameter

of interest. This turns out to be a form of the jackknife, another

nonparametric method'7 .

3. The Monte-Carlo approximation to the bootstrap distribution can be

calculated. With this method, a large number (B) of bootstrap sample

sets is gtnerated by randomly drawing observations from the training

set (again, with replacement from the training set) to form bootstrap

sets of the same size as the training set. The empirical

distribution of the corresponding values of the parameter of interest

calculated using the bootstrap sets is taken as an approximation to

the bootstrap distribution. (This process is shown in Figures hia-c,

where the three figures represent B-=3 bootstrap replications of the

-12-

CRV SVI



training set, and in Figure 12, which shows a Monte Carlo

approximation to the bootstrap distribution.) The Monte Carlo method

is by far the most commonly used experimental technique for obtaining

the bootstrap distribution.

The bootstrap approach illustrates a way in which data analysis in

near-IR reflectance spectroscopy can be simplified, much like near-IR

reflectance methods themselves have simplified spectroscopic

measurements. Specifically, a complex problem can be solved by a simple

procedure iterated a large number of times. In effect, each sample

spectrum in the training set is simply copied thousands of times. The

resulting spectra are then thoroughly shuffled and new training sets are

selected from the copies at random. An expectation value (the center of

the spectral-point cluster in hyperspace) is calculated from each new

training set. The distribution of bootstrap-set centers can be treated

as though it were constructed from actual collected training sets, and

its quantiles can be used to produce an estimate of the value and

precision of the center-parameter for the original population. The

quantiles are therefore useful in defining the boundaries of a training

set or pure compound in the hyperspace of spectral points.

Bootstrap distribution quantiles are readily converted into

confidence intervals. Using the method described above, in which the

distribution of bootstrap-set centers is treated as though it were

constructed from actual observations, selecting any two bootstrap-

distribution percentiles gives the corresponding confidence limits for

the center-parameter (e.g., selecting the 16th and 84th percentiles of

the bootstrap distribution produces the central 68% confidence limits).

At times, however, this method can fail to capture the asymmetry of a
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distribution. (The failure becomes obvious in near-IR spectral data when

the median of the training set is noticeably different from the mean of

the bootstrap distribution.) Similar observations led Efron to propose a

bias correction method that was largely incorporated into the BEAST

(forming the Error-Adjustment)18 . In essence, applying the correction is

a recognition that the mean value of a distribution drifts in the

direction of the skew (measured with respect to the median of the

distribution). Large differences between the median and mean suggest a

skew that casts doubt upon the validity of a simple symmetric confidence

interval. When no difference between the mean and the median exists, the

value of the correction is zero. Otherwise, the error is compensated and

new confidence limits are obtained with an improved representation of any

skew present.

The entire BEAST algorithm can now be outlined. In the technique,

each monitored wavelength is considered a dimension in hyperspace and the

distribution of reflectances on each wavelength axis gives projections of

the clusters of points. Bach point represents an entire spectrum,

translated from the origin by amounts that correspond to the magnitude of

the reflectance observed at each wavelength. Valid samples are defined

as those that fall inside the cluster of training-set points, while false

samples are those that fall outside of the cluster. Confidence limits,

set along any linear combination of wavelengths (dimensions), define the

surface of the cluster at a specified confidence level. These confidence

limits are obtained by using the bootstrap (hence the B in the BEAST) to

arrive at an estimate of the real-sample population distribution based

upon the training-set distribution. The center of the real-sample

distribution is estimated by the BEAST using the center of the bootstrap-
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set centers (the bootstrap distribution). When a new sample (the Single-

sample in the BEAST) is tested, a vector is formed in hyperspace between

the new spectral point and the estimated center point of the real-sample

distribution. A hypercylinder formed about this line will contain a

number of estimated real-sample training-set centers. When the

coordinates of these points are transformed into distances from the

estimated center of the real-sample distribution, a univariate

distribution is constructed. It is this univariate distribution that is

used in the confidence test. The reliance on nonparametric techniques

produces a false-sample test that operates without assumptions about the

shape, sise, symmetry, or orientation of the spectral-point cluster in

hyperspace.

EXPEZIMENTAL

The algorithms previously described were implemented in programs

using VAX-11 BASIC (version 2.4, Digital Equipment Corporation) and

Speakeasy IV Delta (VMS version, Speakeasy Computing Corporation,

Chicago). These programs were run on VAX-11/780 and VAX-11/785

computers. Spectral data at 18 discrete wavelengths were collected using

a Technicon InfraAlyser 400 filter spectrophotometer. This

spectrophotometer was directly connected to a VAX-11/780 computer using

custom interface and graphics progr.s.

Three types of demonstrations were conducted using the BEAST,

beginning with the common compound-identification problem and proceeding

to the more difficult problem of detecting contaminated mixtures. The

three tests were: -

-r "U15-1I. i



1. The BEAST was used qualitatively to distinguish among a number of

pure benzoic-acid derivatives. Each of the four compound names in

Table I represents three spectra of that compound obtained by

rotating the closed-sample cup in the drawer and scanning through the

18 filters.

2. The BEAST was trained with a set of 40 mixtures of the benzoic acid

derivatives used in test 1. The samples were examined at three

selected wavelengths, and the BEAST was then presented with pure

benzoic acid derivatives and other compounds to determine if it could

detect these false samples. A total of 60 samples were prepared for

the training set in this test; of these, 20 were retained for use in

test 3 below. More specifically, the second type of BEAST

demonstration involved developing a training set composed of random

mixtures of salicylic, benzoic, isophthalic, and p-aminobenzoic

acids. Each of these four components was allowed to vary from 0 to

25% (by weight) in each sample. The remainder was made up of the

aluminum-oxide diluent. A random-mixing algorithm (the same one used

to generate the theoretical training set of Figures 4, 5, and 7) was

used to generate the amounts to be used for each component in each

sample. The purpose of this test was to develop a large training-set

spectral cluster that contained variations from a number of sources,

and then to determine whether pure samples could still be correctly

identified as being different (or false) using only the training-set

spectral data. The results for a few compounds from the laboratory

shelf appear in Table [I.

3. The 40-sample training set from test 2 was used again, this time in

conjunction with the 20 mixture samples that were held out of the

~-18-
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training set created in test 2. Ten of these 20 samples were

"contaminated' with a false-sample compound to determine whether

these samples would be flagged. The other ten were unaltered and

served as validation samples.

The benzoic-acid derivatives used in test 1 and in the training set

for tests 2 and 3 were analytical reagent-grade salicylic acid, p-

aminobenzoic acid, isophthalic acid, and benzoic acid. 'Rcag-nt-grade

aluminum oxide was used as a diluent in mixtures where a range of

component concentrations was desired (tests 2 and 3). Before each sample

(or sample mixture) was read in the InfraAlyzer 400 spectrophotometer,

the sample was ground and mixed in a Spex mixer/mill. The powder was

then sifted through a 100-mesh sieve and packed into the closed sample

cup provided with the InfraAlyzer. Three readings were taken on each

sample, each successive reading after a 120-degree rotation of the closed

cup.

RESULTS AND DISCUSSION

Results of Studies Using Benzoic-Acid Derivatives as Samples. The

ability of the BEAST to differentiate among four rather similar benzoic-

acid derivatives (test 1) is suggested by the data in Table I. The

distances tabulated have units of asymmetric nonparametric central 68%

confidence intervals (equivalent to one standard deviation if the

underlying distribution were Gaussian). These intervals were calculated

from the distance (Euclidean metric) between the 0.16 and 0.84 quantiles

o lhe bootst-raip dist-rill.,tiol, fol I owi lig the projection of this

distribution onto the hyperline connecting the center of the bootstrap
-17-



distribution and the new-sample spectral point. These compound-spectra

form four clusters in hyperspace whose intercluster distances (expressed

in 'standard deviations') appear in Table I. The compound heading each

column was designated as the training set, so that the distance from a

column-heading compound to a row-heading compound is given in terms of

nonparametric standard deviations (SDs) of the column-heading compound.

For example, the distance between the clusters representing benzoic acid

and salicylic acid can be expressed in two ways: in terms of the standard

deviation of benzoic acid in the direction of salicylic acid (39 SDs), or

in terms of the standard deviation of salicylic acid in the direction of

benzoic acid (137 SDs). The difference in SDs, of course, reflects the

difference in the variances (sizes) of the benzoic and salicylic acid

clusters in the direction of each other.

In fact, benzoic acid exhibited the largest overall variance of any

of the compounds tested, because of the difficulty of grinding benzoic

acid, which forms long, thin crystals. Such crystals can slip through a

100-mesh sieve and thereby introduce an additional source of variation

into the benzoic acid data cluster. The variation in the other compounds

can be attributed primarily to orientation effects caused by packing

peculiarities, because this was the only factor that was varied between

replicate measurements of these substances. Aluminum oxide (included in

this test because it was used as the diluent in tests 2 and 3) had the

smallest overall variance, not surprising since it was the only reagent

that was available in a powder fine enough to pass through the 100-mesh

sieve.

Other distances in Table I are also in accordance with what might be

predicted: aluminum oxide and isophthalic acid are 4208 SDs apart,

-18-



because chemically they have little in common. In fact, aluminum oxide

is the most distinct from all of the other compounds. Benzoic acid and

salicylic acid form the closest spectral clusters, since they differ by

only a single oxygen atom. For all these pure components, only a small

number of bootstrap replications are required (B=50) because the variance

is relatively small and the distance between adjacent clusters (measured

in 18-dimensional space) is relatively large. This clear disparity

allows the samples to be distinguished computationally in a fraction of a

second. Considering the distances (in terms of SDs) involved, there is

little danger of any of these pure compounds being incorrectly identified

by the BEAST.

Bensoic-Acid Derivative Mixtures. A large number of sample

components, varying over a relatively broad range of concentrations, can

have the effect of 'filling' the spectral hyperspace provided by only a

few analytical wavelengths. This phenomenon is demonstrated by the

3-wavelength training set used in obtaining Table II. The Euclidean

distances for the data in Tables I and II were quite similar (all within

an order of magnitude or so of each other); however, the distance in

terms of standard-deviation units is far more disparate between the two

tables. The reason that the distances in SDs shrink so much from Table I

to Table II is that the cluster size in Table II has increased by about a

factor of 100. This spread causes some apparently unrelated compounds,

like sucrose and whole wheat flour, to appear to be similar to the

training set of benzoic acid derivatives. This increase in training-set

cluster sise also highlights the need to to be aware of the exact shape

of the training-set cluster when small distances are classified as

representing valid or false samples. Finally, mixing a number of



different components results in diluting the contribution of each one to

the total sample spectrum, in effect compressing the available analytical

space further and increasing the probability of mixture-clusters

overlapping. (This behavior can be seen in Figures 3 and 4 as well as 6

and 7.)

Contaminated Bensoic-Acid Derivative Mixtures. The third test of the

BEAST investigated this worst-case mixture-overlap situation by employing

the same training set described in test 2 above to train the BEAST

algorithm. The algorithm was then presented with the remaining 20 sample

mixtures. Ten of these 20 mixtures were 'contaminated' with

acetylsalicylic acid (randomly varying over a range from 1 to 20%). The

results appear in Table III. Even in this worst-case example it is

apparent that the contaminated samples are likely to be detected as

false. Three out of ten of these contaminated samples fail the 3 SD test

for being false. None of the uncontaminated samples was incorrectly

identified.

One might wonder why the response (in terms of SDs) for very similar

contaminant concentrations varies so widely among contaminants in Table

III and why contaminant concentration does not appear to correlate well

to distance. The answer seems to be in what the other four component

concentrations are. When components similar to acetylsalicylic acid rise

in concentration, a 1% contribution to the final spectrum from

acetylsalicylic acid becomes relatively smaller and the sample spectral

point appears to move closer to the training set. Table IV shows the

distance response of the BEAST for two groups of similar acetylsalicylic-

acid contaminant concentrations. The concentration of the diluent

(aluminum oxide) is inversely related to the concentrations of the
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bensoic acid derivatives, so lower diluent concentrations indicate an

increase in the concentrations of the other (non-contaminant) compounds.

This relative increase in the concentrations of the noncontaminant

compounds, in turn, correlates to a decrease in the distance of the

sample from the training set.

lesults of Theoretical Studies UrIng Synthetic Samples. A number of

parameters affect the performance of the BEAST in experimental

situations, including the number of wavelengths used in the analysis, the

training-set size, the selected radius of the hypercylinder, and the

number of bootstrap replications of the training set that are employed.

To investigate the effects of each of these variables, a theoretical

calculation was undertaken using hypothetical multivariate samples,

randomly drawn from a multivariate normal population with a known group

mean (center) and a known variance in all directions. A number of these

synthetic samples (selected by Monte-Carlo integration of the

multivariate normal population) formed a training set that was then

analyzed by the BEAST, whose task it was to indicate the variance of the

training set in a selected direction. The bias and mean-square error

(MSE) of the BEAST as a point estimator of the variance could then be

determined for a particular combination of parameters. Ten runs were

made with each combination of parameters (1, 2, 3 and 5 wavelengths,

training set sizes from 10 to 200 samples, hypercylinder radii from 0.001

to 0.1, and 50, 200, 1000, and 10000 bootstrap replications). The

results are summarized in a series of figures that describe the bias and

error of the BEAST estimator as a function of each of the four

parameters. The figures serve as a brief guide to using the BEAST by

providing estimates of the error that can be expected for typical
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combinations of training-set size, number of replications, number of

wavelengths, and hypercylinder radius.

The most influential factor affecting the bias, or accuracy, of the

BEAST appears to be the size of the training set. Figure 13 depicts the

percentage bias (given by the absolute value of 100(E(t)-K)/K, where K is

the known value used to generate the hypothetical samples and E(t) is the

estimate of the true value given by the BEAST) of the BEAST as a function

of the training-set size for a typical run (d=2 wavelengths, B=1000

bootstrap replications). The bias is quite large (28.5%) when only 10

training samples are used, but it drops steadily to under 1% when the

training set size reaches 200 samples. This suggests that to be prudent

one must use as many training samples as possible, a result that is not

startling in light of the requirements of other near-IR methods2 . A

particularly poor training set (e.g., a small number of samples tightly

clustered in a small region in spectral hyperspace) can cause the bias to

jump to over 106% (as occurred in a run where d=2 wavelengths, B=10000

replications, and n=10 training samples). Potential users of the BEAST

are therefore cautioned to make certain that their training samples are

well-distributed, and not assume that they are well-distributed simply

because they were randomly selected. Histogramsi3 , sample-selection

algorithms21 , and quantile-quantile plots 13 all provide ways for users to

ensure the adequacy of a particular training-set distribution

Figure 13 also shows the relationship between the mean-square error

(USE) and the training-set size. The MSE has been converted to relative

standard deviation (RSD) and expressed as a percentage. Overall the RSD

clearly decreases (improves) as the training-set size increases (the

slight increase in RSD at n=200 samples is probably an artifact of the
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particular sample set that was randomly selected). The training-set size

does not influence the RSD to the same degree as does the number of

bootstrap replications of the training set (shown in Figure 14).

The number of bootstrap replications of the training set is the most

influential factor in determining the RSD of the BEAST. Figure 14 gives

the RSD as a function of the number of bootstrap replications for sampled

spectra consisting of 1, 3, and 5 wavelengths. Two things should be

noted from these plots: first, that the RSD drops rapidly as more

bootstrap replications are performed, and second, that using more S

wavelengths in the analysis demands the use of more replications to

achieve a given RSD. This behavior is not surprising. The BEAST uses

the bootstrap-replicate distribution to approximate the real-sample

distribution. Therefore, more replicates are required as more

wavelengths are used because the size of the analytical space that must

be described by these replicates increases. The number of replicates

must be large enough to assure an adequate number of points in the

hypercylinder as well (though as few as 50 points in the hypercylinder

are often sufficient). Of course, to a certain extent, the number of

points in the hypercylinder can be increased by increasing the radius of

the hypercylinder. Eventually, however, this approach results in a loss

of directional selectivity that begins to bias the quantiles of the data

in the hypercylinder. Figure 15 depicts the percentage bias of the BEAST

as a function of the number of bootstrap replications of the training

set. The accuracy is not as strongly affected as is the RSD by a small

number of replications.

The effect of the hypercylinder radius on the RSD and bias is shown

in Figure 16. The relatively high RSD values in the figure are the
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result of using only 50 bootstrap replications to describe the synthetic

data in a five-dimensional space. As mentioned above, the number of

points in the hypercylinder can be controlled by changing the radius of

the hypercylinder. Many rules for setting this radius could be proposed,

such as setting the radius by a function of the average nearest-neighbor

distance, or by a function of the distance of the smallest dimension in

the cluster. In practice, the best results were most easily obtained by

keeping the radius of the hypercylinder two to three orders of magnitude

smaller than its length. In our experience this approach provides an

adequate number of points inside the hypercylinder and preserves

sufficient directional selectivity.

Figure 17 shows the effect of the number of wavelengths on the RSD

and bias. When the hypercylinder radius is controlled (as was done in

this figure) the bias and RSD will vary only slightly and will remain at

low levels. One would expect both lines to curve upward at a larger

number of wavelengths (if additional replicates are not used). Of

course, if the number of replications and the hypercylinder radius are

not controlled, fewer and fewer points fall inside the hypercylinder as

the number of wavelengths increases. In this event, the results of the

BEAST begin to deteriorate rapidly. The effect of the hypercylinder

radius is particularly sensitive to the number of wavelengths that is

used (the radius had to be increased from 0.001 for the three-wavelength

test runs to 0.005 for the five-wavelength test runs to get any points

inside the hypercylinder at all).

-24-
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CONCLUSIONS

Conventional near-infrared reflectance analysis correlates changes in

sample spectra to changes in sample composition. In this sense, the

near-IR analysis algorithm is essentially a pattern-recognition technique

that produces a linear equation relating a particular component

concentration to reflectances observed at several near-infrared

wavelengths. Like most pattern-recognition methods, the near-IR

reflectance analysis algorithm is accurate only as long as the samples

presented to it are what it 'expects to see." When a new sample falls

outside of the domain of the sample set used to train the near-IR

reflectance analysis algorithm, the near-IR prediction equation does not

apply to the new sample. The Quantile BEAST provides a way to adequately

detect this false-sample situation. The new sample can then be rejected

or the algorithm can be retrained with samples known to be similar to the

new (false) one.

In general, the shape and orientation of experimentally obtained

multidimensional near-IR spectral data are not completely predictable7 .

This fact is suggested by both the synthetic data in Figure 7 and by the

experimental data in Figure 18. Although this unpredictability is

usually not a problem when the simple identification of pure compounds

(or mixtures of low variability) is attempted, it can become a problem

when:

1. the allowable variability of the mixtures increases (e.g., from drift

over time, changing component concentrations, or variations in

particle size or sample packing), or
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2. mixture samples are contaminated by a foreign component not present

in the training set.

A nonparametric clustering method, the Quantile BEAST, functions

without assumptions about the shape, size, orientation, or symmetry of

the data. Deviations from assumptions cannot be reflected in the

method's results. Like many other nonparametric methods, the BEAST is

based on a very simple procedure (the drawing of a bootstrap sample)

iterated a large number of times to produce a whole result (the sample

classification) that is seems almost greater than the sum of the method's

parts. One of the strengths of the BEAST is its ability to produce an

understandable result in an understandable way.

The false-sample problem is an important one with many facets, and

lives can literally depend on getting a correct answer. False samples

might be over-the-counter drug capsules filled with poison, and placed in

a batch of the unadulterated drug capsules. False samples might be decoy

missile warheads dispersed among real warheads, traveling in space en

route to their targets. The BEAST is potentially applicable to both

situations, and to more. However, the BEAST is not limited merely to use

in solving the false-sample problem. It is easy to envision using the

BEAST to select training-set samples as well. In many near-IR

reflectance analysis applicatione it is desirable to include a relatively

large number of Oextremel samples in the training set in order to obtain

a prediction equation with a uniform error over its entire range. The

BEAST can take a large number of potential training samples in wavelength

space and create an estimate of the true training set using bootstrap-

probability space. A uniform sampling of the potential training samples

in wavelength space (using each sample's probability of belonging to the
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training set, obtained from the bootstrap space) will then produce a

representative training set from the spectra without the need for tedious

chemical analysis of each potential training-set sample.

A weakness of the BEAST that does not hinder parametric methods is

the requirement that a bootstrap-replicate distribution be calculated.

The largest distribution used in this research (10000 replications) took

2 minutes and 21 seconds of CPU time to create. If this distribution had

to be computed using a single CPU for each sample to be analyzed, the

'IEA ' would be impractical in many applications. In practice, however,

just as a training set is assembled only once, its replicate distribution

need only be created once as well. The important requirement then

becomes one of computer memory space and not of time. For many analyses

the microcomputers currently available with 256K memory may be adequate.

The BEAST algorithm is naturally suited to implementation in a

parallel-processing environment becaus- its bootstrap samples are drawn

randomly, independently, and with replacement from the near-IR spectral

training set. Basically, the BEAST reaches its solution n times faster

when n processors are employed. This parallel-processing mode was used

to produce the bias and RSD data for the BEAST that appears in Figures

13-17. The deceptively simple plots disguise the fact that five VAX

11/780 computers were used in parallel to create and analyze over 80000

multicomponent synthetic samples with various combinations of training-

set size, hypercylinder radius, and number of waveleng4hs and bootstrap

rtplications used. After the algorithm was recoded into parallel form

the bias and RSD results were obtained in a single afternoon. As

parallel processing becomes more common and hardware becomes readily
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available, the BEAST will become an even more attractive option in an

ever-increasing number of real-time analytical problems.
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TABLE I. Using the BEAT for Qualitative Analysis

Differentiating Among Four Bensoic-Acid Derivatives

and a Diluent (distances in BEAST SDaft)

Isoh2pb Benzoc A12O3d Salcyle PABAO

Isoh2p 0 188 4208 638 1072

Benso 1254 0 2889 137 483

A1203  3930 405 0 1488 3041

Salcyl 1197 39 2991 0 449

PABA 1052 72 3198 234 0

aThe distance between any two compound-cluster combinations is given in

terms of the column-heading compound in the direction of the row-heading

compound.

bisophthalic acid

ebenzoic acid

daluminum oxide (the diluent in later tables)

esalicylic acid

fp-aminobenzoic acid
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TABLE II. Distances (in BEAST SDs) of Four Pure Ground (100 mesh)

Compounds from a Training Sets of Mixtures of Compounds

Compound Distance

acetylsalicylic acid 8.20

dextrose 46.33

whole wheat flour 12.71

sucrose 3.88

aTrainirZ set composed of mixtures of benzoic acid, isophthalic acid,

salicylic acid, p-aminobenzoic acid, and an aluminum oxide diluent.
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TABLE III. Distances (in BEAST SDs) of Real and False (contaminated)

Mixtures from the Mixture Training Set Used in Table II

Sample Real Samples& False Samplesb

No. (Validation Set) (Contaminated Set) Contaminant (%)

1. 1.29 8.59 1.1

2. .61 3.25 8.0

3. .76 5.05 3.8

4. .47 4.55 14.8 S

5. 1.97 2.66 4.2

6. 1.54 1.77 19.9

7. 1.65 6.53 1.7

8. 1.18 3.34 1.0

9. .79 3.88 10.7

10. 1.10 2.32 4.5

(Note: the cluster surface is customarily defined as being three standard

deviations from the center of the cluster.)

&'Real* mixtures contain benzoic acid, isophthalic acid, salicylic acid,

p-aminobensoic acid, and aluminum oxide. In essence, the real samples

form a validation set because they contain the same compounds as the

training set samples.

biFalse" mixtures contain the same components as real mixtures, except

that acetylsalicylic acid is also added.
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TABLE IV. Distance Response of the BRAST (in standard deviations) for

Two Groups of Similar Contaminant Concentrations In the False

Samples from Table III

Sample Acetylsalicylic

No. Distance(SDs) Diluent(%) Acid (%)

I. 8.967 1.1

7. 6.53 64 1.7

8. 3.34 50 1.0

3. 5.05 57 3.8

5. 2.66 41 4.2

10. 2.32 44 4.5
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Figure Captions

Figure 1. - Two thousand spectra, taken at two wavelengths, of two

hypothetical compounds, A and B. These spectra are represented as points

in a two-dimensional space. A line can be formed between the centers of

these two clusters. The box in this figure marks off a region that

includes all points within a certain distance (radius) of this center

line.

Figure 2. A quantile-quantile (QQ) plot of the spectral data points

within the radius of the center line shown in Figure 1. The best-fit

straight lines through the two groups of points are shown. The slopes of

these lines are the same because the two clusters (A and B) have the same

variance in the direction of one another. The inset is a histogram

(empirical distribution function) of the points inside the "cylinder"

formed about the center line in Figure 1, i.e., the points that generated

the QQ plot. The horizontal axis of the histogram covers the same range

as the full horizontal axis of the QQ plot.

Figure 3. Two-wavelength spectra of three pure hypothetical compounds,

A, B, and C. The spectra are free of error from all sources.

Figure 4. Hypothetical spectra of 1000 training samples, composed of

mixtures with randomly selected proportions of A, B, and C, whose two-

wavelength spectra are shown in Figure 3.
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Figure 5. Hypothetical spectra of 1000 new training samples. These

samples are made up from pure compounds like those in Figure 3; however,

in this figure A and C have been shifted in position (in other words,

they are new compounds with new spectra). The cluster is still

elliptical, although its size, center, and orientation have changed.

Figure 8. Two-wavelength spectra of three hypothetical compounds like

those in Figure 3. There are 1000 samples of each compound. Unlike in

Figure 3, however, error was permitted in the location of each compound,

giving the three basically elliptical clusters shown (B and C at the top

overlap).

Figure 7. Spectra of 1000 training samples, composed of the same

compounds used to generate Figure 5. This time error was permitted in

the locations (spectra) of the compounds A, B, and C (see Figure 6) and

the shape of the resulting training cluster is irregular. The cluster

corresponding to compound B was three times larger than those of A and C.

Figure 8. The frequency distribution of the points inside a cylinder

containing the center of the cluster shown in Figure 7. The distribution

is right-skewed.

Figure 9. The effect of skew on confidence-limit determinations.

Symmetric limits (about the mean) are clearly inadequate for this

distribution. The probability of an observation appearing at the (mean-

a) and the (mean+a) is not the same.
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Figure lOa. A hypothetical true population distribution F, containing

all possible training samples.

Figure lOb. Constructing an empirical distribution (the training set)

from the possible training samples (the unknown distribution F) in Figure

lOa.

Figure 11a. Drawing a wbootstrap set w from the training set. This set

has the same number of samples as the training set. The bootstrap-set

samples are selected randomly and with replacement from the samples in

the training set. The bootstrap-set samples appear as vertical-lined

bars. The training-set samples appear (to provide a position reference)

as crosshatch bars.

Figure llb. The unknown distribution F is approximated by repeated

drawing of randomly selected bootstrap-sample sets, of the same size as

the training set, from the training set. In each bootstrap-sample set

some training-set values are selected once, some more than once, and some

are not selected at all. Again, the bootstrap-sample set appears as

vertical-lined bars, and for reference, the unchanged training set

appears as crosshatched bars.

Figure 11c. A third unique bootstrap-sample set (vertical-lined bars)

drawn from the same training-set samples (crosshatched bars) used in

Figures 11a and 11b.
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Figure 12. The hypothetical distribution of parameters calculated for

each bootstrap-sample set generated during the Monte-Carlo process

depicted in Figures 11a, lb, and 11c.

Figure 13. The percentage bias (solid line) and RSD (dotted line) of the

BEAST distance estimator as a function of the training-set size (N)

(B=1000 bootstrap replications, D=2 wavelengths (dimensions), R=OO01,

the radius of the hypercylinder).

Figure 14. The dependence of the relative standard deviation of the

BEAST estimator on the number of bootstrap replications (B) of the

training set. The solid line corresponds to a sample monitored at five

wavelengths, the dotted line to a sample monitored at three wavelengths,

and the dashed line to a sample monitored at only one wavelength (N=50

training samples, R--O.O01, the radius of the hypercylinder).

Figure 15. The percentage bias of the BEAST estimator as a function of

the number of bootstrap replications (B) of the training set (N=150

training samples, D=5 wavelengths (dimensions), R--O.005, the radius of

the hypercylinder).

Figure 16. The relative standard deviation (dotted line) and bias (solid

line) of the BEAST estimator as a function of the radius (R) of the

hypercylinder (B=50 bootstrap replications, N=100 training samples, D=5

wavelengths (dimensions)). The high RSD values observed are the result

of using only 50 bootstrap replications.
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Figure 17. The relative standard deviation (dotted line) and bias (solid

line) of the BEAST estimator as a function of the number of wavelengths

(D) used to monitor the sample (B=10000 bootstrap replications, N=50

training samples). The hypercylinder radius was set at R=0.001 for two

and three wavelengths, and at R--0.005 for five wavelengths.

Figure 18. A cross-section of the benzoic acid derivatives training set

used in Tables II and III. This cross-section has been projected on a

wavelength axis, and is right-skewed.
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LIST OF SYMBOLS

S

Special defined operations:

M(x) median of x (x is a set, vector, 1- or 2-D array)

R(f(x)) roots of f(x) by trapezoidal interpolation

S
r random number on O<x<l, Monte Carlo integration of

continuous uniform distribution

x(T) creates bootstrap distribution B for training set

T, and finds the center C of the distribution

#(T,B,I,C) finds BEAST distance from center C of training set

T to new spectrum I using probability determined

with bootstrap distribution B

[x] greatest integer function of scalar, set, vector,

or 1- or 2-D array

Ox) 1/(21) 1/2 X 
e - t 2 / 2 dt, area from -0 to x.

-L(x) inverse of above; i.e., given area, find x
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O(x) ordered elements of x (x is a set, vector, 1- or

2-D array

equals, or 'is replaced by" when the same variable

appears on both sides of =

'such that' qualifier on a variable, e.g.,

{xIO<x<l} specifies the range of possible values

for x M

lxI the absolute value of x (x is a scalar)

Scalars:

n training-set size, i.e., number of samples

d number of wavelengths

m number of training-set replications comprising

bootstrap distribution (user determined)

aBEAST standard deviation (SD), average of upper

and lower confidence limits producing a symmetric

distance

error-adjusted BEAST SD, asymmetric value produced
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using only one confidence limit

rh hypercylinder radius (user-determined)

6 skew sensitivity (user-determined)

nh number of spectral points falling inside a hypercylinder

lower confidence-limit index (index is a position

in an ordered array that expresses the value of an

integral from the end of the array to the index)

u upper confidence-limit index

a contour level specified by 0(-a), used to

determine if test spectrum is inside or outside a

cluster

Z& *-'(a)

S(02) Euclidean distance from bootstrap-distribution

center C to new spectral point I

S(CoR) Euclidean distance from training-set center C(T)

to bootstrap-distribution center C

S(c2R) Euclidean distance from training-set center C(T)
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to the new spectral point I

S(CUB) 1/2 the total length of the sides of a triangle

specifying a particular plane in hyperspace

AC area of a triangle whose vertices specify a

particular plane in hyperspace

S(cR) Euclidean distance from training-set center C(T)

to hyperline connecting C to I

S(Op) Euclidean distance S(coR) projected on the

hyperline connecting C to I

index for error adjustment in Sq

z° 0-1 (z./nh)

Matrices, vectors, and arrays:

B = (bij),,d m by d bootstrap distribution

C = (cJ)d center of the bootstrap distribution B

P = (Pij)m,n training-set sample numbers selected for

bootstrap-sample sets used to calculate the

-4-



bootstrap distribution

B(s) = (b(s)LJ)n,d  bootstrap sample set used to calculate single

rows of B

T = (tij)n,d training-set sample spectra

I = (XJ)d test-sample spectrum

S(OR) =(s(OR)i) Euclidean distances from each element of B to C

S(2R) -(s(n)O) Euclidean distances from each element of B to I

S(UB) =(S(uB)i) 1/2 total length of triangle sides formed by

planes in hyperspace connecting 1, C, and the rows

of B

A = (ai)m areas of triangles formed by planes in hyperspace

connecting X, C, and the rows of B

S(R) = (S()i)a radial Euclidean distances from the rows of the

bootstrap distribution B to the hyperline

connecting I to C

S(p) = (S(p)O)R Euclidean distances from C to the rows of B

projected on the hyperline connecting C to X
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8 (q) (s(i)~hordered nh elements of {s(;P)IIrh<S(R)i}

C(T) =(c(T)j)d center of training set T by M(tjj)

F = f YOhh elements of S~)corrected using C(T)

p '(N) = (i(N)i).h nh independent variables of the set {1, 2, 3, ..

paired with F to locate the root of F
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APPEI I. 

The quantile BEAST

The Quantile BEAST is basically an experimental clustering technique

for exploring multivariate data distributions. A number of different

variations in the details of the implementation still produce a method

that is consistent with the description presented thus far. As is the

case with many problems, there is more than one route to the same

solution. One path to determining the BEAST distance is presented here.

In near-infrared spectral data analysis, virtually all

implementations of the BEAST begin with the collection of a training set

of samples. The training set consists of spectral data values (e.g.,

absorbance, log(l/R), etc.) recorded at d wavelengths for n training

samples. The resulting data are represented by a two-dimensional n-by-d

matrix (or array) T.

The BEAST itself is composed of two operations:

1. The bootstrap distribution is created from the training set by an

operation x(T). This bootstrap distribution forms the basis for

calculating directional probabilities, and is calculated only once

for each training set. x(T) provides the bootstrap distribution B

for the training set as well as the center C (groupmean) of the

bootstrap distribution.

2. The operation #(T,B,I,C) calculates a and o (the BEAST standard

deviation, or SD) uling the training set T, the bootstrap

distribution B and center C (from step 1 above), and the test

-7-



sample's spectrum I. The Euclidean distance from C to I is scaled by

a or a. to give the distance to I in BEAST SDs.

Once the training set has been assembled x(T) can be calculated.

Random selections are made from T by filling P with the training-set

sample numbers to be used in the bootstrap sample sets B0.),

P = pij = r (1)

and then the values in P are scaled to the training-set size n:

P = [(n-l)P + 1]. (2)

A bootstrap sample B(s) is then created for each row i of B by

B(.) = tkj (3)

where k are the elements of the ith rows of P. The ith row of B is

actually filled by the center (groupmean) of the bootstrap sample

n
b. lb .j/ n (4)j i1(s) i,j

and the center of the bootstrap distribution is

m
cj =iLIbij/ m (5)

At this point X(T) is complete for the training set, and the analysis of

actual test samples can begin.

The calculation of the BEAST distance using f(T,B,I,C) now requires

only a test spectrum I obtained from a sample of interest by scanning the

sample at d wavelengths. This calculation involves finding the hyperline

connecting C and 1, and determining the probability of I belonging to T

based upon the number of points (rows of B) within a certain distance rh
-8-
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of the hyperline (in effect, taking the points or rows of B that fall

within a hypercylinder of radius rh). This implementation of the BEAST

proceeds toward the point-density of the hypercylinder by forming planes

connecting 1, 0, and the rows of B. The use of a series of planes allows

a complex structure like a hypercylinder in d-dimensional hyperspace to

be represented in a simple manner regardless of the number of spatial

dimensions (in fact, the number of planes is completely independent of

the spatial dimension).

The three points that specify a plane in space also specify a

triangle whose sides are readily determined:

d 2

d 21/2
s(OR)i = (jEl(bij- -j)) (7)

s(2.~= _jlb j x. )2 ) 1/2 (8)

Once this series of triangles has been formed, finding the rows of B that

fall inside the hypercylinder is a straightforward procedure.

s (u-)i (S(02) + S(OR)i + s .(2R)i) / 2 (9)

ai • (a (UB) i(s (UB) i- S (02)) (s(UB) i- s (OR) i ) (s (UB) i- s (2R)i)12(0

s(R): 2( i ) / (02) (11)

s (p)i= (s (OR)i - 2) 1/2 (12)

b -9-
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The elements of S(P) are Euclidean distances, from the center C to each

point in the bootstrap distribution B, projected on the hyperline

connecting C to the new sample spectrum I. In this implementation of

f(T,B,I,C), constructing a hypothetical plane through C such that the

hyperline from I to C is normal to the plane allows these S(p) distances

to be given a direction along the hyperline. Points in the bootstrap

distribution that are on the same side of the plane as I are assigned

positive distances in S(,). The remainder of the elements of S(p) have

negative values. This directional assignment can be accomplished by

multiplying the elements of for which {S(0 2)
2 + s(oR)i 2 < S(2R)i2 }

by -1. At this point the values of S(p) representing points in B that

are outside of the hypercylinder are discarded for the remainder of the

calculations:

S (q)= O({s(p)i S(R)i< rh}) (13)

and nh becomes the number of elements in S(q).

For a symmetric 1 SD contour on T, 1 = [O.l6nh] and u = [0.8 4nh], making

the confidence interval along the hyperline connecting I and C

{s(ol<C<S(q).}. Note that if nh is less than about 50, the interval

will not be very precise at all. The uncorrected a can be found by

either

(1(q)ll + I(q)ul) 1/2(14)

2

-10-
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or by calculating the standard deviation of S(q) and multiplying it by

n1/2. Once o is known the distance to the test spectrum in uncorrected

BEAST SDs (suitable for unskewed training sets) is simply

d 2 1/2
(jl(cj- x/ a (15)

Of course, many training sets are skewed and 1 and u should be

adjusted to compensate for the skew before finding S(q)l and S(q)u. At

the start of this adjustment one must be aware of the number of replicate

points available in B in order to select an adequate contour level for

the training set T. For m 1000 this contour should probably be one, so

a=t(-l). Setting za=§-(a) and locating the center of T by C(T)j=MJ(tij )

sets the stage for the adjustment of the confidence limits to compensate

for skew.

C(T) will tend to lie in space in the direction opposite to the

direction of the skew (with respect to C) because of the leverage effect

Gf skewed points on the mean. This fact is the basis of the confidence-

limit adjustment, and the calculation of the magnitude of the adjustment

begins with a determination of the distance and direction of the

difference between C and C(T) with respect to the hyperline connecting C

to I.

d 2 1/2 (18)

(COR) = (j l(C(T)- c ) )(

d
d(C,2) Il(T)i 2 1/2 (17)
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S (S hL 2 (18) -~.

S(CB) (02)+ S(COR)+ S(C2R)) / 2 (18)

A - (S (CUB) (S(CUB) S( 0 2 )) (S(cUB) S(COR)) (S(jCUB)- S(C2R))) 1 / 2 (19)

S(CR)= 2(Ac) / S(0 2 ) (20)

S (cp)= (S(coR) 2 _ S(CR) 2 ) 1/2 (21)

The directional sign given to S(cP) is opposite that given to S(P), If

{S(0 2)
3 + S(CoR) > S(c21 )} then S(cp) is multiplied by -1.

At some point it may be useful to compare the mean of S(q) to the

median of S(q). If the two are substantially different S(q) may be

skewed. The Central Limit Theorem applies to S(q) so the presence of

skew probably indicates that nh points are not enough to create a stable

confidence-limit adjustment. If skew is present two options are

ivailable: (1) go back to x(T) and specify a larger m, or (2) increase rh

and recalculate #(T,B,I,C) (note that this option may cause a loss of

directional selectivity that can bias the quantiles of S(q) ). Finally,

it should be noted that S(q) has been ordered at this point and therefore

the use of some common ways of calculating M(S(q)) will result in very

poor running times for the algorithms. To efficiently find M(S(q)),

simply select the (nh/2+1/2)th element of S(q) where nh is odd, and the

mean of the (nh/2)th and (nh/2+l)th elements where nh is even.

In order to make S(cp) perform well as an adjustment in a

computational environment where almost any axis scale or skew is

poss ible., S(UP ) is replaced by S(Cp)64M(S(q)). The addition of M(S(q))

-12-
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helps to assure that the correction S(op) and and its array-analog z,

(defined below) have the same sign (direction) when S(q) is slightly

skewed, and 5 provides a skew sensitivity adjustment. Typically 6 has a

value between 0 and 1 that is set empirically for each combination of T

and B to keep the absolute magnitude of the adjustment inside of the

actual values of S(q.)

The calculation of the z. adjustment from S(Cp) proceeds as follows:

s (q)i S(CP) (22)

{1, 2, 3, ... , n (23)

z= [ R(F(I(N))) ] (24)

soe/ nh) (25)

If I2zoI > Izal then 6 should be decreased and the calculation resumed at

eq. 16. Otherwise, new 1 and u values for S) are calculated:

1 = [ 4(2so+ za)nh ] (26)

u = [(2z- Z.)nh 1 (27)

As in the case of the uncorrected BEAST SD a, the confidence interval

along the line connecting I and C is {s(q)l<C<s(q)u. In this

implementation of the BEAST, the upper confidence limit is always the one
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closest to the teat spectrum I. Thus, uj, is simply s~q ., and the

distance in adjusted BUAST SDs from the training set T to the test

spectrum X is

d 21/2 1/2
(.E1(c j- x.)2) / (('C /s a)n) (28)
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